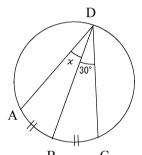
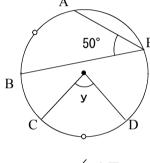

5. 基本のたしかめ・章末問題

<基本1>次の図で、 $\angle x$ 、 $\angle y$ 、 $\angle z$ の大きさを求めなさい。

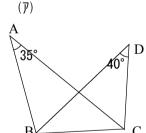

 $\angle x =$

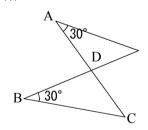
 \angle y =

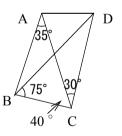
 $\angle z =$


 $\langle \bar{a} \rangle$ く基本2>次の図で、 $\langle \bar{a} \rangle$ な、 $\langle \bar{a} \rangle$ の大きさを求めなさい。

 $\widehat{\text{(1)}}$ $\widehat{AB} = \widehat{CD}$

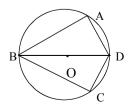

 $\angle x =$



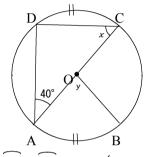


∠ y =

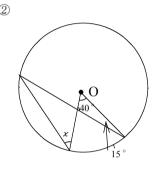
<基本3> 次の図の(ア)から(ウ)のうち、4点A、B、C、Dが同じ円周上にあるのはどれか。 (1) (ウ)



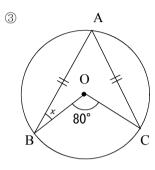
<基本3>右の図で、BDは円Oの直径で、ÂD=DCです。このとき△ABD≡△CBDであることを 証明しなさい。

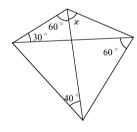


章末問題

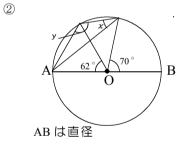

く問題1>1つの円で、次の大きさの弧に対する円周角は何度ですか。

<問題2>次の図で、 $\angle x$ 、 $\angle y$ の大きさを求めなさい。

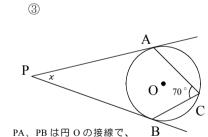


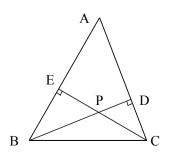


 $\angle x =$

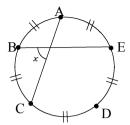


AB = AC $\angle x =$

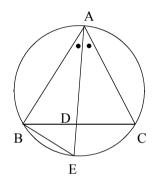

<問題3>次の図で、 $\angle x$ 、 $\angle y$ の大きさを求めなさい。


$$\angle x =$$

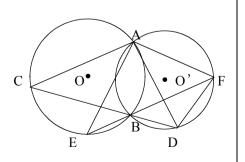
 $\angle y =$


点A、Bはその接点 $\angle x =$

<問題4>△ABCで、頂点B、Cから、 それぞれ、AC、ABに垂線BD、CE をひき、その交点をPとします。点A、 B、C、D、E、Pのうち、同じ円周上 にある4点の組を見つけなさい。



<問題5>図のように、円周を5等分する点を、A、B、C、D、Eとする。このとき、 $\angle x$ の大きさを求めなさい。


 $\angle x =$

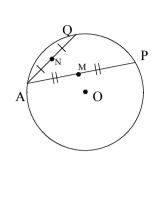
く問題 6>図のように、円周上の3点A、B、Cを頂点とする \triangle ABCがあります。 \angle BACの二等分線が、 \upDelta BC、BCと交わる点を、 $\upoldsymbol{2}$ それぞれ D、Eとするとき、 \triangle ABE $^{oldsymbol{2}}$ \triangle BDEであることを証明しなさい。

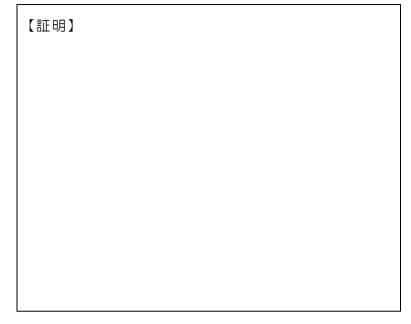
【証明】
\triangle ABE $\succeq \triangle$ BDE \subset .
仮定より、
\angle BAE =
ECに対する円周角だから、
∠ EAC=
したがって、
\angle BAE = \cdots
また、共通な角だから 、
$\angle AEB = \underline{\qquad} \cdots \textcircled{2}$
①②から,
、それぞれ等しいので 、
△ AB E ∞

<問題7>2点A、Bで交わる2円O、O'がある。点Bを通る2直線が、図のように、円O、O'と、それぞれ、点C、Dおよび点E、Fで交わっているとき、 Δ ACD \triangle Δ AEFであることを証明しなさい。

【証明】

 \triangle ACD \succeq \triangle AEF \overline{C}


円OのABに対する円周角だから、


円O'のABに対する円周角だから、

①②から,____、_____、それぞれ等しいので、

$$\triangle$$
 ACD ∞

<問題8>図のように、円Oの周上の1点Aから2つの弦AP、AQをひき、それぞれの中点をM、Nとする。このとき、4点A、O、M、Nは同じ円周上にあることを証明しなさい。

<問題9>図のように、3点A、B、Cがある。直線ABについて点Cと反対側に、AB⊥CP、 ∠APB=30°となる点Pを作図しなさい。

> C •

Α •

• B